Ellis – van Crevel Syndrome,
(Chondroectodermal Dysplasia Syndrome) in a Gurkha Family

Captain J C Nainby-Luxmoore
BA, MB, BS, RAMC
Senior House Officer in Paediatrics
British Military Hospital, Hong Kong, BFPO 1

SUMMARY: The first reported case of Ellis – van Crevel syndrome in a Gurkha child is described, and the implications of the syndrome in this ethnic group are briefly considered.

Introduction
This autosomal recessive syndrome was first described by Ellis and van Crevel in 19401. They reported three children with the following congenital abnormalities: ectodermal dysplasia (affecting the hair, teeth and nails), polydactyly, chondrodysplasia, and congenital “morbus cordis”. The largest single study of this syndrome was presented by McKusick in 19642 when he reported 52 cases in a highly inbred Amish population in the USA. It has, however, never been previously documented in a Nepalese family.

Case Report
A female child was delivered by a 24 year old Gurkha Corporal’s wife, para 1, gravida 2. The mother’s first child, a boy, had been born eighteen months previously by forceps delivery in Nepal, but had died at 8 months of age due to meningitis. During this second pregnancy she was admitted to hospital twice, once at 33 weeks (by dates) because of polyhydramnios, and then again at 35 weeks because of abdominal pain, possible antepartum haemorrhage and premature labour.

Labour started spontaneously at 35+3 weeks by dates (33 weeks by scan). The first stage took 7 hours 45 minutes and was latterly augmented by oxytocin; the second stage took 6 minutes. The baby’s birth weight was 2.100 kg, and she was given mucus extraction and facial oxygen. Apgar scores were 8 at 1 minute, 9 at 5 minutes and 9 at 10 minutes. She was then transferred to an incubator.

General clinical examination revealed multiple external abnormalities. The limbs were short and the chest was small (Fig. 1). Six fingers were present on each hand, and short simian palmar creases with incurring little fingers were also present bilaterally (Fig. 2). Clefts were noted bilaterally between the great and second toes, and all the nails were small and dysplastic (Fig. 3). Two incisor teeth were clearly present in both upper and lower jaws (Fig. 4). There was also an ejection systolic murmur which was loudest at the left sternal edge, but there were no signs of cardiac failure. The passage of a nasogastric tube excluded oesophageal atresia.

She received regular oral feeds, but sixteen hours after delivery she developed profound hypoglycaemia, thermoregulatory disturbance and cardiac failure. Despite all resuscitative efforts, she died six hours later.

Radiological examination after death confirmed prematurity, and revealed a normal vault and spine, and normal ribs. There was, however, symmetrical shortening of both the proximal and distal bones of the limbs, which were otherwise normally modelled. Ulnar sided polydactyly was also confirmed.

At postmortem examination the pericardium was normal, and the heart was of normal size. There was, however, a common atrioventricular orifice and a single outlet from the heart. This truncus arteriosus supplied both the systemic and pulmonary circulations. The main systemic veins and arteries appeared to have a normal configuration.

Fig. 1. Post mortem view of the whole body showing small chest and short extremities.
Fig. 2. Post mortem view of the right hand showing polydactyly.

Fig. 3. Post mortem view of the dorsum of the right hand showing nail dysplasia and polydactyly.

Fig. 4. Post mortem view of the mouth showing the upper two teeth.

Discussion

Ellis–van Creveld syndrome carries a mortality of about fifty per cent in early infancy because of the cardiac abnormalities. Most of those who survive are of normal intelligence and have an adult height of 43 to 60 inches. There are, however, frequent dental problems and also limitations in hand function.

As the syndrome has not previously been reported in a Nepalese family, its implications for these farming people have never been considered. While the short stature would be of little significance in a population of small people, the abnormalities of the hands and the possibility of mental retardation would not be socially acceptable. Nevertheless, Nepalese culture holds the ability to raise a large family in high esteem, despite high infant mortality, and male children receive markedly preferential care. This family is, therefore currently of low status because both of their babies so far have died.

The autosomal recessive nature of the condition means that they are at high risk of having another affected child and would obviously benefit from antenatal diagnosis, as described in papers by Hobbins et al., Mahoney et al. and Bui et al., using techniques such as real time ultrasound and fetoscopy. These are not, unfortunately, available in Nepal.

The question therefore arose as to whether the family should be told of the 25% chance of subsequent babies being affected. In view of the social mores, it was felt that they would continue to try to have a family until they had at least one healthy boy. They were therefore told of the possibility of their having another affected baby, but the numeric probability of such an event was omitted.

REFERENCES

Ellis – van Creveld Syndrome, (Chondroectodermal Dysplasia Syndrome) in a Gurkha Family
J C Nainby-Luxmoore

J R Army Med Corps 1988 134: 126-127
doi: 10.1136/jramc-134-03-03

Updated information and services can be found at:
http://jramc.bmj.com/content/134/3/126.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/